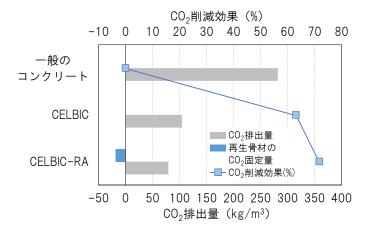
環境配慮型コンクリート CELBIC-RA(再生骨材を使用した CELBIC)の実用化へ - 13 社で低炭素・資源循環を実現 –

BFCCU*1 研究会(五洋建設(幹事)、青木あすなろ建設、淺沼組、安藤ハザマ、奥村組、熊谷組、鴻池組、鉄建建設、東急建設、東京テクノ、東洋建設、長谷エコーポレーション、矢作建設工業の13社で構成)は、環境配慮型コンクリートである CELBIC(セルビック)*2に、解体ガラなどからリサイクルした再生骨材を使用した、「低炭素性」と「資源循環性」を併せ持つ環境に優しいコンクリート「CELBIC-RA」を開発しました。


CELBIC-RA (Consideration for Environmental Load using Blast furnace slag In Concrete-Recycled Aggregate / セルビック アールエー)は、結合材の 70%に高炉スラグ微粉末を使用した CELBIC に、製造~保管の工程を経て二酸化炭素(CO_2)を固定した CCU 材料である再生骨材を使用した環境配慮型コンクリートで、一般のコンクリートと比較して最大で 70%程度の CO_2 を削減することが可能です。再生骨材は、解体ガラなどを主な原料として製造されており、 CO_2 と反応するセメントペーストが含まれていることから、製造~保管の工程を通じて CO_2 を固定することができる材料です。 CELBIC-RA では、 CO_2 を固定するセメントペーストの量が比較的多い再生骨材 M や再生骨材 L を使用します。

BFCCU 研究会では、実機実験を通じて CELBIC-RA の製造および品質管理手法を確立するとともに、 構造体コンクリートとしての性能を確認しました。

- *1 BFCCU: Blast Furnace slag + Carbon dioxide Capture and Utilization
- *2 CELBIC:建築コンクリート構造物に求められる所要の品質を確保しつつ、コンクリート材料に由来する二酸化炭素の排出量の約9~63%を削減する環境配慮型コンクリート

再生骨材の品質区分ごとの概要

品質 区分	セメントペースト	CO ₂ 固定量	製造手間	製造 コスト
L	多	多	小	安
M				
Н	少	少	大	包

CELBIC-RA の CO₂削減効果

■ 特長

①環境配慮性の高いコンクリート

CELBIC-RA は、高炉スラグ微粉末と再生骨材をそれぞれ大量に使用することから、建築工事標準仕様書・同解説 JASS 5 鉄筋コンクリート工事 (日本建築学会)の環境性評価において、「資源循環等級 3」および「低炭素等級 3」に該当する環境配慮性の高いコンクリートです。

②CO₂削減効果の向上

CELBIC-RA は、普通ポルトランドセメントの使用量を 70%低減するとともに大気中の CO_2 を固定した再生骨材を使用しますので、コンクリート材料に由来する CO_2 排出量を最大で 70%程度削減 *3 することが可能です。

*3 試算結果

③再生骨材 M および再生骨材 L の採用

CELBIC-RA では、加熱等の特殊な方法ではなく、破砕や磨砕といった機械的な処理で製造した再生骨材 M や L を使用します。そのため、骨材製造時のエネルギー投入量を抑制しつつ、多くの CO_2 を固定することが可能です。また、CELBIC-RA は、JIS A 5022 に規定されている「再生骨材コンクリートM」に該当しますので、場所打ち杭や基礎等の建築構造物に適用することができます。

CELBIC	結合材		細骨材	粗骨材			
-RA の種類	普通 セメント	高炉スラグ 微粉末	再生骨材 M	再生骨材 M	再生骨材 L	普通骨材	
MM	30%	70%	100%	100%		_	
NAI				_	50%	50%	

CELBIC-RA で使用する結合材・骨材の組合せ

再生骨材の CO₂ 固定量の例

再生骨材の種類	CO ₂ 固定量 (kg-CO ₂ /t)		
再生細骨材 M	19.9		
再生粗骨材 M	10.2		
再生粗骨材 L	11.7		

再生骨材の製造設備

BFCCU 研究会参加各社はサプライチェーン全体の CO₂ 排出量削減ならびに資源の有効活用に取り組んでいます。今後は、環境配慮性の高いコンクリートである CELBIC-RA の実現場での普及・展開を図り、サーキュラーエコノミーの実現ならびに 2050 年カーボンニュートラルの実現に貢献してまいります。